miércoles, 15 de febrero de 2017

REACCIONES QUIMICAS Y ESTEQUIOMETRIA 2° C





REACCIONES QUIMICAS Y ESTEQUIOMETRIA - Slideshare







es.slideshare.net/SANTTANS/reacciones-quimicas-y-estequiometria





ACTIVIDAD REVISAR EL VIDEO Y REALIZAR UN REPORTE PARA ENTREGAR EN CLASE

TRANSPORTE DE ELECTRONES EN LA MITOCONDRIA T.S. BIOLOGIA

Cadena de transporte de electrones

La cadena de transporte de electrones
La cadena de transporte de electrones es una serie de mecanismos de electrones que se encuentran en la membrana plasmática de bacterias, en la membrana interna mitocondrial o en las membranas tilacoidales, que mediante reacciones bioquímicas producen trifosfato de adenosina (ATP), que es el compuesto energético que utilizan los seres vivos. Sólo dos fuentes de energía son utilizadas por los organismos vivos: reacciones de (reducción-oxidación) y la luz solar (fotosíntesis). Los organismos que utilizan las reacciones redox para producir ATP se les conoce con el nombre de quimioautótrofos, mientras que los que utilizan la luz solar para tal evento se les conoce por el nombre de fotoautótrofos. Ambos tipos de organismos utilizan sus cadenas de transporte de electrones para convertir la energía en ATP

Cadenas de transporte de electrones en mitocondrias[editar]

Las células de la mayoría de eucariotas contienen orgánulos intracelulares conocidos con el nombre de mitocondrias que producen ATP. Las fuentes de energía como la glucosa son inicialmente metabolizados en el citoplasma y los productos obtenidos son llevados al interior de la mitocondria donde se continua el catabolismo usando rutas metabólicas que incluyen el ciclo de los ácidos tricarboxílicos, la beta oxidación de los ácidos grasos y la oxidación de los aminoácidos.
El resultado final de estas rutas es la producción de dos donadores de electrones: NADH y FADH2. Los electrones de estos dos donadores son pasados a través de la cadena de electrones hasta el oxígeno, el cual se reduce para formar agua. Esto es un proceso de múltiples pasos que ocurren en la membrana mitocondrial interna. Las enzimas que catalizan estas reacciones tienen la notable capacidad de crear simultáneamente un gradiente de protones a través de la membrana, produciendo un estado altamente energético con el potencial de generar trabajo. Mientras el transporte de electrones ocurre con una alta eficiencia, un pequeño porcentaje de electrones son prematuramente extraídos del oxígeno, resultando en la formación de un radical libre tóxico: el superóxido. En los últimos años se ha descubierto que los complejos de la cadena de transporte de electrones suelen juntarse unas con otras formando estructuras proteínicas mayores que se nombran supercomplejos respiratorios.
Estos supercomplejos suelen estar formados únicamente por los complejos I, III y IV en plantas, mientras que en mamíferos se les han encontrado en conjunto con complejo II también. Se ha propuesto que la función de la formación de los supercomplejos respiratorios es la canalización de los electrones a través de los complejos I, III y IV, con la finalidad de agilizar el transporte de electrones, regular la formación de radicales de oxígeno o incrementar la eficiencia de producción de ATP por medio de la exclusión de la alternativa oxidasa o de las NAD(P)H dehidrogenasas del tipo II del transporte de electrones. De esta forma únicamente las proteínas que tienen la capacidad de transportar protones a través de la membrana interna de las mitocondrias y que por lo mismo contribuyen a la formación del gradiente electroquímico para la producción de ATP estarían incluidas en la estructura de los supercomplejos.
El parecido entre las mitocondrias intracelulares y las bacterias de vida libre es altísimo. El conocimiento de la estructura, la funcionalidad y las similitudes en el ADN entre mitocondrias y las bacterias prueban fuertemente el origen endosimbiótico de las mitocondrias. Es decir, hay fuertes pruebas que indican que las células eucarióticas primitivas incorporaron bacterias, que debido a las fuerzas selectivas de la evolución se han trasformado en un orgánulo de estas.

ACTIVIDAD 1
REALIZAR UN RESUMEN DE LA LECTURA Y ENTREGARLO EN CLASE

TRIADA ECOLOGICA



ACTIVIDAD PARA SEXTO SEMESTRE CIENCIAS DE LA SALUD








Copy of TRIADA ECOLÓGICA DEL DENGUE by Alejandra Casillas on ...

https://prezi.com/sjcucpm-ntvn/copy-of-triada-ecologica-del-dengue




REVISAR Y LEER Y REALIZAR UN RESUMEN DE LA TRIADA ECOLOGICA DEL DENGE



IMPRIMIR Y LLEVAR A CLASE




ACTIVIDAD PARA CUARTO SEMESTRE



MITOSIS

El ciclo celular (Fig. 9.6) es la serie de eventos que se suceden en una célula en división. Se reconocen dos etapas: 
bullet
MITOSIS, división del núcleo en dos núcleos hijos y división del citoplasma.
bullet
INTERFASE, durante la cual la célula crece y el ADN se duplica.  Comprende tres períodos:  G1, S y G2.
G1 (gap 1) es un período de crecimiento activo del citoplasma, incluyendo la producción de los orgánulos. 
Durante el período S (síntesis) se replica el ADN.
En G2 (gap 2) se sintetiza el material citoplasmático necesario para la división celular, como por ejemplo las moléculas de tubulina, proteína que compone los microtúbulos para el huso acromático.




Fig. 9.6. Ciclo celular

En células que se dividen activamente, la mitosis ocupa un 10% y la interfase el 90% del ciclo. Los períodos G1 y G2 ocupan cada uno un 25%, y el período S el 40%.

La mitosis fue descubierta por Hoffmeister, en 1848, en células de embriones vegetales. Es un mecanismo de separación física de los cromosomas que se han duplicado durante la interfase.
En los organismos unicelulares es una forma de multiplicación, y en los pluricelulares, es la responsable del crecimiento del cuerpo vegetativo.

Ciclo celular


El resultado de la mitosis es la formación de 2 células hijas con el mismo número de cromosomas que la célula madre.
¿En qué parte de la planta se encuentran células que se dividen por mitosis?
En la planta las células que se dividen activamente por mitosis se ubican en los meristemas.  En determinadas ocasiones cualquier célula viva con núcleo puede desdiferenciarse y dividirse por mitosis (Figs. 9.7 y 9.7a). 

Fases de la Mitosis

La mitosis es un proceso continuo, que convencionalmente se divide en cuatro etapas: profasemetafaseanafase y telofase.

Fig. 9.7. Mitosis en células de Allium cepa

Profase
Profase (pro: primero, antes). Los cromosomas se visualizan como largos filamentos dobles, que se van acortando y engrosando. Cada uno está formado por un par de cromátidas que permanecen unidas sólo a nivel del centrómero. En esta etapa los cromosomas pasan de la forma laxa de trabajo a la forma compacta de transporte. La envoltura nuclear se fracciona en una serie de cisternas que ya no se distinguen del RE, de manera que se vuelve invisible con el microscopio óptico. También los nucleolos desaparecen, se dispersan en el citoplasma en forma de ribosomas.

Metafase
Metafase (meta: después, entre). Aparece el huso mitótico o acromático, formado por haces de microtúbulos; los cromosomas se unen a algunos microtúbulos a través de una estructura proteica laminar situada a cada lado del centrómero , denominada cinetocoro. También hay microtúbulos polares, más largos, que se solapan en la región ecuatorial de la célula. Los cromosomas muestran el máximo acortamiento y condensación, y son desplazados por los microtúbulos hasta que todos los centrómeros quedan en el plano ecuatorial. Al final de la metafase se produce la autoduplicación del ADN del centrómero, y en consecuencia su división.

Anafase

Anafase (ana: arriba, ascendente). Se separan los centrómeros hijos, y las cromátidas, que ahora se convierten en cromosomas hijos. Cada juego de cromosomas hijos migra hacia un polo de la célula. El huso mitótico es la estructura que lleva a cabo la distribución de los cromosomas hijos en los dos núcleos hijos. El movimiento se realiza gracias a la actividad de los microtúbulos cromosómicos, que se van acortando en el extremo unido al cinetocoro.  Los microtúbulos polares se deslizan en sentido contrario, distanciando los dos grupos de cromosomas hijos (Strasburger et al. 1994).
Hay drogas específicas que influyen experimentalmente en la formación y descomposición de los microtúbulos. La colquicina o colchicina es un alcaloide extraído de Colchicum autumnale que inhibe la polimerización de moléculas de tubulina. Cuando se aplica  a células en división, impide la formación de los microtúbulos, por lo tanto no se forma el huso mitótico, y la consecuencia es que se duplica el número de cromosomas de la célula.

Telofase

Telofase (telos: fin). Comienza cuando los cromosomas hijos llegan a los polos de la célula. Los cromosomas hijos se alargan, pierden condensación, la envoltura nuclear se forma nuevamente a partir del RE rugoso y se forma el nucleolo a partir de la región organizadora del nucleolo de los cromosomas SAT.

Preparado histológico: gentileza de Guillermo Seijo


Fig.9.7a, Representación esquemática de la mitosis

Esquema de la mitosis
Imagen tomada de Berg (1997)

CITOCINESIS Y FORMACIÓN DE LA PARED CELULAR

Citocinesis es la división del citoplasma, ocurre luego que se ha dividido el núcleo en dos núcleos hijos durante la mitosis. En las plantas superiores, durante la telofase tardía, aparece en el ecuador de la célula, una estructura llamada fragmoplasto.


Está constituida por dos sets de microtúbulos con polaridad opuesta que superponen sus extremos en el plano de división. Se forma a medida que el huso acromático desaparece. 
Entre los microtúbulos aparecen numerosos dictiosomas, que se unen formando una gran cisterna.  En su interior se encuentran los polisacáridos necesarios para la formación de la laminilla media y de la fase amorfa de la pared primaria (Fig.9.8).
La membrana de los dictiosomas unidos entre sí se transforma en membrana plasmática. Túbulos del retículo endoplasmático se disponen en la placa celular en formación,  perpendicularmente con respecto a ella. A medida que se forma la pared primaria, quedan mangas citoplasmáticas alrededor de los túbulos del retículo endoplasmático, rodeadas por la membrana plasmática: constituyen los plasmodesmos primarios.

Fig.9.8.Formación de la pared primaria


Imagen modificada a partir de Strasburger et al. (1986)
Los microtúbulos juegan un papel importante, al determinar la orientación y disposición de las microfibrillas de celulosa que constituyen la fase fibrilar de la pared primaria. Las microfibrillas son sintetizadas por las rosetas de celulosa-sintasas ubicadas en la membrana plasmática. La formación del tabique progresa en forma centrífuga hasta alcanzar la periferia, exactamente en el lugar donde se formó la banda preprofásica (Fig. 8.12).

GENOMA

El juego de cromosomas diferentes que incluye el surtido completo de genes necesarios para caracterizar una especie determinada se llama genoma y se representa con la letra x.
El genoma puede estar representado 2 ó más veces en el complemento cromosómico de una especie. Así en una especie diploide, la célula somática presenta 2 genomas, es decir que 2n=2x. Los gametos presentan un solo genoma, son haploides, es decir que n=x. Los gametos se forman después de la meiosis, división celular en la cual una célula madre origina 4 células hijas con el número cromosómico reducido a la mitad.  Además esas células hijas son diferentes a la célula madre y también diferentes entre sí.


El resultado de la meiosis es la formación de 4 células hijas con la mitad de cromosomas que la célula madre

En qué partes de la plantas hay células que se dividen por meiosis?

En los sacos polínicos de las anteras, encontramos microsporocitos y en el óvulo una célula llamada macrosporocito, que se divide por meiosis. La meiosis siempre está asociada a la reproducción sexual, dando por resultado la formación de esporas o gametas.
horizontal rule

POLIPLOIDÍA

Hay organismos o células cuyos núcleos presentan más de dos genomas, y estas células u organismos se denominan poliploides. El grado de ploidía puede variar, así hay organismos triploides (3x), tetraploides (4x), hexaploides (6x), etc. Por ejemplo: Triticum aestivum, es un hexaploide. La causa de este fenómeno son las perturbaciones de la división nuclear, que pueden producirse naturalmente por altas temperaturas, radiaciones, y experimentalmente con ciertas drogas como la colchicina. Las células poliploides son frecuentemente mayores, y en consecuencia también lo son las plantas, frutos, etc. Esto tiene importancia comercial y por eso se utilizan mucho las plantas poliploides en agricultura.

POLIPLOIDÍA SOMÁTICA O ENDOPOLIPLOIDÍA

Normalmente dos genomas en cada célula son suficientes para producir la cantidad necesaria de ARN para dirigir la síntesis proteica. Sin embargo, en las células vegetales muy activas metabólicamente, dos copias parecerían insuficientes, y entonces el núcleo replica su ADN volviéndose poliploide. Parecería que en las plantas superiores, muchos tipos de células  son poliploides. Los vasos del xilema, las células del tapete, las células secretoras, muchos pelos, etc. son generalmente poliploides. En un mismo individuo pueden aparecer células con distintos niveles de ploidía: en Tropaeolum majus se han encontrado células en el pecíolo con nivel de ploidía 32x; células en tallo 128x  y ciertas células del tegumento seminal son 1024x.
A veces se forman células polinucleadas, como por ejemplo en los tubos laticíferos, en el endosperma y en las células del tapete.
Otras veces se produce politenia, es la multiplicación de ADN sin aumento del número cromosómico. Cromosomas politénicos muy grandes se han encontrado en el suspensor del embrión de Phaseolus coccineus, Phaseolus vulgaris y Loasa sp.

Niveles de ploidía en una especie con x=5
Nivel de ploidíaNº somáticoNº gamético

bulletDiploide
  2n= 2x= 10  n= x= 5

bulletTriploide
 2n= 3x= 15----

bulletTetraploide
 2n= 4x= 20 n= 2x= 10

bulletHexaploide
2n= 6x= 30 n= 3x= 15
Capítulo anterior Página Principal Capítulo siguiente
Tema 1 ] Tema 2 ] Tema 3 ] Tema 4 ] Tema 5 ] Tema 6 ] Tema 7 ] Tema 8 ] Tema 9 ] Tema 10 ]Tema 11 ] Tema 12 ] Tema 13 ] Tema 14 ] Tema 15 ] Tema 16 ] Tema 17 ] Tema 18 ] Tema 19 ]Tema 20 ] Tema 21 ] Tema 22 ] Tema 23 ] Actividades ] Tema 24 ]


horizontal rule

Botánica Morfológica: www.biologia.edu.ar/botanicaMorfología de Plantas Vasculares - Facultad de Ciencias Agrarias, Sgto. Cabral 2131
2001- 2013 © Todos los derechos reservados 
Universidad Nacional del Nordeste
, Corrientes, Argentina
WEBMASTER: Dra. Ana Maria GonzalezCON

IMPRIMIR Y LLEVAR A CLASE ADEMAS REALIZAR ESQUEMAS DE LAS FASES DE LA MITOSIS Y MEIOSIS POR SU ATENCION GRACIAS 

miércoles, 8 de febrero de 2017



tradu.gif (166926 bytes)
En 1953, James Watson y Francis Crick, descubrieron la estructura tridimensional de uno de estos ácidos, concretamente del ácido desoxirribonucleico (ADN). Posteriormente se describió como se producía la duplicación, transcripción y traducción, en fin, como funcionan los ácidos nucleicos.waycr.jpg (8510 bytes)
INDICE  Funciones de los ácidos nucleicos.1.-Duplicación del ADN.
1.1.- Mecanismo de duplicación del ADN en procariontes.
1.2.-Mecanismo de duplicación del ADN en eucariontes.
2.- Expresión del mensaje genético.
2.1.-Transcripción en procariontes.
2.2.-Transcripción en eucariontes.
3.- El código genético.
4.- Traducción.
5.- Test sobre el tema.
6.- Ejercicios.





.- Duplicación del ADN

La vida de los seres vivos es muy variable , por tanto para que esta no se extinga ha de haber un momento en se reproduzcan, lo cual lleva implicito la formación de copias del ADN del progenitor o progenitores .Se dieron muchas hipótesis sobre como se dupllicaba el ADN hasta que Watson y Crick propusieron la hipótesis semiconservativa (posteriormente demostrada por Meselson Y Stahl en 1957), según la cual, las nuevas moléculas de ADN formadas a partir de otra antigua, tienen una hebra antigua y otra nueva.
adn13.jpg (42600 bytes)
MECANISMO DE DUPLICACIÓN DEL ADN EN PROCARIONTES
an8.jpg (34195 bytes)  an09.gif (34243 bytes)
Hay que recordar que es circular y ocurre en tres etapas:
1ª etapa: desenrrollamiento y apertura de la doble hélice.en el punto ori-c.
Intervienen un grupo de enzimas y proteinas, a cuyo conjunto se denomina replisoma
* Primero: intervienen las helicasas que facilitan en desenrrollamiento
* Segundo: actuan las girasas y topoisomerasas que eliminan la tensión generada por la torsión en el desenrrollamiento.
* Tercero: Actuan las proteinas SSBP que se unen a las hebras molde para que no vuelva a enrollarse.
adn15.jpg (41045 bytes)
2ª etapa. síntesis de dos nuevas hebras de ADN.
* Actuan las ADN polimerasas para sintetizar las nuevas hebras en sentido 5´-3´, ya que la lectura se hace en el sentido 3´-5´.
* Intervienen las ADN polimerass I y III, que se encargan de la replicación y corrección de errores. La que lleva la mayor parte del trabajo es la ADN polimerasa III
* Actua la ADN polimerasa II, corrigiendo daños causados por agentes físicos.
La cadena 3´-5´es leida por la ADN polimerasa III sin ningún tipo de problemas ( cadena conductora). En la cadena 5´-3´ no puede ser leida directamente, esto se soluciona leyendo pequeños fragmentos ( fragmentos de Okazaki ) que crecen en el sentido 5´-3´y que más tarde se unen . Esta es la hebra retardada,llamada de esta forma porque su síntesis es más lenta.
an9.jpg (50265 bytes)
La ADN polimerasa III es incapaz de iniciar la síntesis por sí sola, para esto necesita un cebador (ARN) que es sintetizado por una ARN polimerasa (=primasa). Este cebador es eliminado posteriormente.
3ª etapa: corrección de errrores.
El enzima principal que actua como comadrona (R. Shapiro) es la ADN polimerasa III, que corrige todos los errores cometidos en la replicación o duplicación. Intervienen otros enzimas como:
* Endonucleasas que cortan el segmento erroneo.
* ADN polimerasas I que rellenan correctamente el hueco.
* ADN ligasas que unen los extremos corregidos

DUPLICACIÓN DEL ADN EN EUCARIONTES
Es similar a la de los procariontes, es decir, semiconservativa y bidireccional. Existe una hebra conductora y una hebra retardada con fragmentos de Okazaki. Se inicia en la burbujas de replicación (puede haber unas 100 a la vez)
an14.gif (14211 bytes)
Intervienen enzimas similares a los que actuan en las células procariontes y otros enzimas que han de duplicar las histonas que forman parte de los nucleosomas. Los nucleosomas viejos permanecen en la hebra conductora.
an04.gif (21114 bytes)
Telomerasas e inmortalidad

TUTOR.gif (2829 bytes)




2.- Expresión del mensaje genético. Transcripción

La información contenida en la secuencia de nucleótidos del ADN podía generar proteinas; sin embargo el ADN está en el núcleo y las proteinas se sintetizan en los ribosomas, los cuales están situados en el citoplasma. El intermediario resultó ser un ARNm.Las etapas del proceso son:
anucl.gif (3820 bytes)
VIH y retrotranscripción
TRANSCRIPCIÓN EN PROCARIONTES.
En ella podemos distinguir las siguientes fases:a) Iniciación: la ARN polimerasa se une a un cofactor sigma.gif (49 bytes) que permite su unión a una región del ADN llamada promotor, la cual posee una secuenciaa TATAAT ó TTGACA.
b) Elongación: la ARN polimerasa recorre la hebra de ADN hacia su extremo 5´ sintetizando una hebra de ARNm en dirección 5´-3´
c) Finalización: presenta dos variantes. En una interviene un cofactor "p" y en otra no interviene dicho cofactor. El proceso fiinaliza al llegar a una secuencia rica en G y C (zona llamada operador). El ADN vuelve a su forma normal y el ARNm queda libre.
d) Maduración: si lo que se forma es un ARNm no hay maduración, pero si se trata de un ARNt o ARNr hay procesos de corte y empalme.
adn28.jpg (65314 bytes)

TRANSCRIPCIÓN EN EUCARIONTES
Hay que tener en cuenta dos cosas:- Existen tres tipos de ARN polimerasa I, II y III.
- Los genes están fragmentados en zonas sin sentido o intrones y zonas con sentido o exones. Antes ha de madurar y eliminar los intrones.
- Desempaquetamiento de las histonas.
En la trascripción de eucariontes se distinguen las siguientes fases:
a) Iniciación: la ARN polimerasa II se une a una zona del ADN llamada promotor (posee secuencias CAAT y TATA)
b) Elongación: la síntesis continua en sentido 5´-3´. Al poco se añade una caperuza (metil-guanosín trifosfato) al extremo 5´.
c) Finalización: parece que está relacionado con la secuencia TTATTT. Ahora interviene un poli-A polimerasa que añade una cola de poli-A al pre-ARNm(ARNhn).
d) Maduración: se produce en el núcleo y la hace un enzima llamada RNPpn, que elimina los nuevos intrones (I) formados.
Posteriormente las ARN ligasas empalman los exones (E) y forman el ARNm.
an27.gif (36127 bytes)
TUTOR.gif (2829 bytes)


.- El código genético
El código genético viene a ser como un diccionario que establece una equivalencia entre las bases nitrogenadas del ARN y el leguaje de las proteinas, establecido por los aminoácidos.Después de muchos estudios (1955 Severo Ochoa y Grumberg; 1961 M.Nirenberg y H. Mattaei) se comprobó que a cada aminoácido la corresponden tres bases nitrogenadas o tripletes (61 tripletes codifican aminoácidos y tres tripletes carecen de sentido e indican terminación de mensaje).
codigo.jpg (52017 bytes)
El código genético tiene una serie de características:
- Es universal, pues lo utilizan casi todos los seres vivos conocidos. Solo existen algunas excepciones en unos pocos tripletes en bacterias.
- No es ambigüo, pues cada triplete tiene su propio significado
- Todos los tripletes tienen sentido, bien codifican un aminoácido o bien indican terminación de lectura.
- Está degenerado, pues hay varios tripletes para un mismo aminoácido, es decir hay codones sinónimos.
- Carece de solapamiento,es decir los tripletes no comparten bases nitrogenadas.
- Es unidireccional, pues los tripletes se leen en el sentido 5´-3´.

TUTOR.gif (2829 bytes)